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AI-A-Z Learn How To Build An AI

1 Introduction

This handbook is an additional resource for the Artificial Intelligence A-Z online course, a project backed
on Kickstarter by 2826 backers and raised over 200,000 AUD. The course is now hosted on Udemy with over
250,000 students:

Assuming a prior knowledge in neural networks, this book can be read alone without taking the course.
However it would be much easier to follow it along with the course, which besides contains a Q&A support.
We thank you all very much for your support and wish you an exciting journey into the world of AI!
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2 Markov Decision Processes

To begin our journey of AI, we must start with Markov Decision Processes.

A Markov Decision Process is a tuple (S,A, T,R) where:

• S is the set of the different states. A state can be a vector of encoded values or a 3D input image.
Let’s take the Pacman game for example. What would be a state in that case ? If the state has the
form of a vector of encoded values then this vector would contain all the informations that can describe
what is going on at time t, that is: the coordinates of the position of Pacman, the coordinates of the
velocity vector telling the direction where Pacman is going, etc. All these values in a vector could
encode a state of the environment. This vector is then going to be the input of a neural network where
the output is going to be the action to play. And if the state is an input image, then the input would
be exactly a screenshot of the game screen at each time t, which is exactly the case for the Pacman
environment. We will study this in the section on Deep Convolutional Q-Learning.

• A is the set of the different actions that can be played at each time t. For the MsPacman environ-
ment, there are nine possible actions: NOOP, UP, RIGHT, LEFT, DOWN, UPRIGHT, UPLEFT,
DOWNRIGHT, and DOWNLEFT.

• T is called the transition rule:

T : (at ∈ A, st ∈ S, st+1 ∈ S) 7→ P(st+1|st, at)

where P(st+1|st, at) is the probability that the future state is st+1 given that the current state is st and
the action played is at. Therefore T is the probability distribution of the future states at time t + 1

given the current state and the action played at time t. Accordingly, we can predict the future state
st+1 by taking of random draw from that distribution T:

st+1 ∼ T (at, st, .)

• R is the reward function:

R : (at ∈ A, st ∈ S) 7→ rt ∈ R

where rt is the reward obtained after playing the action at in the state st.

After defining the MDP, it is important to remind that it relies on the following assumption: the probability
of the future state st+1 only depends on the current state st and action at, and doesn’t depend on any of
the previous states and actions. That is:

P(st+1|s0, a0, s1, a1, ..., st, at) = P(st+1|st, at)
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Now let’s recap what is going on in terms of MDPs. At every time t:

1. The AI observes the current state st.

2. The AI plays the action at.

3. The AI receives reward rt = R(at, st).

4. The AI enters the following state st+1.

Now the question is:

How does the AI know which action to play at each time t ?

To answer this question, we need to introduce the policy function. The policy function π is exactly the
function that, given a state st, returns the action at:

π : st ∈ S 7→ at ∈ A

Let’s denote by Π the set of all the policy functions. Then the choice of the best actions to play becomes
an optimization problem. Indeed, it comes down to finding the optimal policy π∗ that maximizes the
accumulated reward:

π∗ = argmax
π∈Π

∑
t≥0

R(π(st), st)

So now of course the question becomes:

How to find this optimal policy π∗ ?

That is where Q-Learning comes into play. But before getting to it, we need to understand the concept of
future reward.

3 Future Cumulative Reward

Let’s consider one episode of the game, that is from t = 0 (Game Start) to t = n (Game Over). When
playing games, most of the time the goal is to reach the highest score. Therefore to do this, we should not
consider the reward only at time t, but the future cumulative reward until the end of the game (from time t
to time n). Therefore, we need to consider, not rt = R(at, st), but instead:

Rt = R(at, st) +R(at+1, st+1) + ...+R(an, sn) = rt + rt+1 + ...+ rn

However we can still improve the model. The elements rt, rt+1, ..., and rn are values we are trying to
estimate with the reward function R. Therefore when we are at time t, the further we look into the future
the less certain we are about the reward at this future time. In other words, the larger is t′, the larger is
the variance of the estimated reward rt+t′ . Hence, to fix that effect, we need to discount each of the future
single rewards, and the further we are in the future, the more we discount it because the less certain we are
about it. A way to do this is to take the discounted some of rewards:

Rt = rt + γrt+1 + γ2rt+2...+ γn−trn

where γ ∈ [0, 1]. That way the higher is t′, the smaller is γt
′
, and therefore the more rt+t′ is discounted.

γ is called the discount factor. The closer γ is to 0, the more the AI will try to optimize the current reward
rt. The closer γ is to 1, the more the AI will aim to optimize the future reward. This discount factor is what
we will keep for our Q-Learning algorithm.
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4 Q-Learning

4.1 The Q-value

To each couple of action and state (a, s), we are going to associate a numeric value Q(a,s):

Q : (at ∈ A, st ∈ S) 7→ Q(at, st) ∈ R

We will say that Q(a, s) is "the Q-value of the action a played in the state s".

To understand this purpose, we need to introduce the temporal difference.

4.2 The Temporal Difference

At the beginning t = 0, all the Q-values are initialized to 0.

Now let’s suppose we are at time t, in a certain state st. We play the action at and we get the reward rt.

Then we take a random draw from the T (at, st, .) distribution, which leads us to the next state st+1:

st+1 ∼ T (at, st, .)

We can now introduce the temporal difference, which is at the heart of Q-Learning. The temporal difference
at time t, denoted by TDt(at, st), is the difference between:

• rt + γmax
a

(Q(a, st+1)), γ ∈ [0, 1], that is the reward rt obtained by playing the action at in the state
st, plus a percentage (which is our previous discount factor γ) of the Q-value of the best action played
in the future state st+1,

• and Q(at, st), that is the Q-value of the action at played in the state st,

thus leading to:

TDt(at, st) = rt + γmax
a

(Q(a, st+1))−Q(at, st)

But what exactly is the purpose of this temporal difference TDt(at, st) ?

TDt(at, st) is like an intrinsic reward. The AI will learn the Q-values in such a way that:

• If TDt(at, st) is high, the AI gets a "good surprise".

• If TDt(at, st) is small, the AI gets a "frustration".

Then, in the final next step of the Q-Learning algorithm, we use the temporal difference to reinforce the
couples (action, state) from time t− 1 to time t, according to the following equation:

Qt(at, st) = Qt−1(at, st) + αTDt(at, st)

With this point of view, the Q-values measure the cumulation of surprise or frustration associated with the
couple of action and state (at, st). In the surprise case, the AI is reinforced, and in the frustration case, the
AI is weakened. Hence we want to learn the Q-values that will give the AI the maximum "good surprise".
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Accordingly, the decision of which action to play mostly depends on the Q-value Q(at, st). If the action at
played in the state st is associated with a high Q-value Q(a,st), the AI will have a higher tendency to choose
a. On the other hand if the action a played in the state s is associated with a small Q-value Q(at, st), the
AI will have a smaller tendency to choose at.

There are several ways of choosing the best action to play. First, when being in a certain state st, we could
simply take a with which we have the maximum of Q(a, st):

a = argmax
a

(Q(a, s))

But experience has shown that this is not the best option. A better solution is the softmax method.

The softmax method consists of considering for each state s the following distribution:

Ws : a ∈ A 7→ exp(Q(s, a))τ∑
a′ exp(Q(s, a′))τ

with τ ≥ 0

Then we choose which action a to play by taking a random draw from that distribution:

a ∼Ws(.)

4.3 The whole Q-Learning process

Let’s summarize the different steps of the whole Q-Learning process:

Initialization:

For all couples of actions a and states s, the Q-values are initialized to 0:

∀a ∈ A, s ∈ S,Q0(a, s) = 0

We start in the initial state s0. We play a random action and we reach the first state s1.

At each time t ≥ 1:

1. We play the action at, where at is a random draw from the Ws distribution:

at ∼Wst(.) =
exp(Q(st, .))

τ∑
a′ exp(Q(st, a′))τ

, with τ ≥ 0

2. We get the reward rt = R(at, st)

3. We get into the next state st+1, where st+1 is a random draw from the T (at, st, .) distribution:

st+1 ∼ T (at, st, .)

4. We compute the temporal difference:

TDt(at, st) = rt + γmax
a

(Q(a, st+1))−Q(at, st)

5. We update the Q-value:

Qt(at, st) = Qt−1(at, st) + αTDt(at, st)
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5 Deep Q-Learning

5.1 Q-Learning into Deep Learning

Deep Q-Learning consists of combining Q-Learning with Artificial Neural Networks. Inputs are encoded
vectors, each one defining a state of the environment. These inputs go to an Artificial Neural Network,
where the output is the action to play. More precisely, let’s say the environment’s action space has n possible
actions, the output layer of the neural network is comprised of n output neurons, each one corresponding to
the Q-values of each action played in the current state. Then the action played is the one associated with
the output neuron that has the highest Q-value (argmax), or the one returned by the softmax method. And
since Q-values are real numbers, that makes our neural network an ANN for Regression.

Hence, in each state st of the environment:

• the prediction is the Q-value Q(at, st) where a is chosen by argmax or softmax

• the target is rt + γmax
a

(Q(a, st+1))

• the loss error is the squared of the temporal difference:

Loss =
1

2

(
rt + γmax

a
(Q(a, st+1))−Q(at, st)

)2

=
1

2
TDt(at, st)

2

Then this loss error is backpropagated into the network, and the weights are updated according to how much
they contributed to the error.

5.2 Experience Replay

We notice that so far we have only considered transitions from one state st to the next state st+1. The
problem with this is that st is most of the time very correlated with st+1. Therefore the network is not
learning much. This could be way improved if, instead of considering only this one previous transition, we
considered the last m transitions where m is a large number. This pack of the last m transitions is what is
called the Experience Replay. Then from this Experience Replay we take some random batches of transitions
to make our updates.

5.3 The whole Deep Q-Learning Process

Let’s summarize the different steps of the whole Deep Q-Learning process:

Initialization:

For all couples of actions a and states s, the Q-values are initialized to 0:

∀a ∈ A, s ∈ S,Q0(a, s) = 0

The Experience Replay is initialized to an empty list M .

We start in the initial state s0. We play a random action and we reach the first state s1.

Page 7 of 11



AI-A-Z Learn How To Build An AI

At each time t ≥ 1:

1. We play the action at, where at is a random draw from the Ws distribution:

at ∼Wst(.) =
exp(Q(st, .))

τ∑
a′ exp(Q(st, a′))τ

, with τ ≥ 0

2. We get the reward rt = R(at, st)

3. We get into the next state st+1, where st+1 is a random draw from the T (at, st, .) distribution:

st+1 ∼ T (at, st, .)

4. We append the transition (st, at, rt, st+1) in M .

5. We take a random batch B ⊂M of transitions. For each transition (stB , atB , rtB , stB+1) of the random
batch B:

• We get the prediction:

Q(stB , atB )

• We get the target:

rtB + γmax
a

(Q(a, stB+1))

• We get the loss:

Loss =
1

2

(
rt + γmax

a
(Q(a, st+1))−Q(at, st)

)2

=
1

2
TDt(at, st)

2

• We backpropagate this loss error and update the weights according to how much they contributed
to the error.

Figure 1: Deep Q-Learning
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6 Deep Convolutional Q-Learning

In the previous section, our inputs were vectors encoded values defining the states of the environment. But
since an encoded vector doesn’t preserve the spatial structure of an image, this is not the best form to
describe a state. The spatial structure is indeed important because it gives us more information to predict
the next state, and predicting the next state is of course essential for our AI to know what is the right next
move. Therefore we need to preserve the spatial structure and to do that, our inputs must be 3D images (2D
for the array of pixels plus one additional dimension for the colors). In that case, the inputs are simply the
images of the screen itself, exactly like what a human sees when playing the game. Following this analogy,
the AI acts like a human: it observes the input images of the screen when playing the game, the input images
go into a convolutional neural network (the brain for a human) which will detect the state in each image.
However, this convolutional neural network doesn’t contain pooling layers, because they would loose the
location of the objects inside the image, and of course the AI need to keep track of the objects. Therefore
we only keep the convolutional layers, and then by flattening them into a 1-dimensional vector, we get the
input of our previous Deep Q-Learning network. Then the same process is being ran.

Therefore in summary, Deep Convolutional Q-Learning is the same as Deep Q-Learning, with the only
difference that the inputs are now images, and a Convolutional Neural Network is added at the beginning
of the fully-connected Deep Q-Learning network to detect the states (or simply the objects) of the images.

Figure 2: Deep Convolutional Q-Learning
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7 Asynchronous Actor-Critic Agents (A3C)

7.1 A3C Intuition

So far, the action played at each time has been the output of one neural network, as if only one agent was
deciding the strategy to play the game. This will no longer be the case with A3C. This time, we are going to
have several agents, each one interacting with its own copy of the environment. Let’s say there are n agents
A1, A2,..., An.

Each agent is sharing two networks: the actor and the critic. The critic evaluates the present states, while
the actor evaluates the possible values in the present state. The actor is used to make decisions. At each
epoch time of training for on agent, it takes the last version of the shared networks and uses the actor during
n steps in order to make a decision. Over the n steps, it collects all the observed new states, the values of
these new states, the rewards, etc... After the n steps, the agent uses the collected observations in order to
update the shared models. The times of epoch, and therefore the times of updates of the shared network by
the agent are not synchronous, hence the name.

That way, if an unlucky agent starts to be stuck into a suboptimal but attractive policy, it will reach out that
state – because other agents also updated the shared policy before the agent got stuck – and will continue
effective exploration.

In order to explain the update rules of the actor and the critic, let us see the networks as functions that
depend on vectors of parameters θ (for the actor) and θv (for the critic).

7.2 The whole A3C Process

The official A3C algorithm is the one of the Google DeepMind paper, "Asynchronous Methods for Deep Re-
inforcement Learning" (https://arxiv.org/pdf/1602.01783.pdf). In this paper you will find it in the following
S3 algorithm:

Figure 3: A3C algorithm (https://arxiv.org/pdf/1602.01783.pdf)
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Figure 4: A3C

In this figure above we can clearly see the three As of the A3C:

• Asynchronous: There are several agents, each one having their own copy of the environment, and all
asynchronised (playing the game at different times).

• Advantage: The advantage is the difference between the prediction of the actor, Q(s, a), and the
prediction of the critic, V (s):

A = Q(s, a)− V (s)

• Actor-Critic: Of course we can see the actor and the critic, that therefore generate two different
losses: the policy loss and the value loss. The policy loss is the loss related to the predictions of
the actor. The value loss is the loss related to the predictions of the critic. Over many epochs of
the training, these two losses will be backpropagated into the neural network, then reduced with an
optimizer through stochastic gradient descent.

8 Conclusion

Today in 2024, one of the most powerful AI models is the A3C. But research is making great progress at a
fast pace, so who knows if the A3C could already be outdated in a couple of years. And by 2029, this course
might have to be called "Weak Artificial Intelligence A-Z", because if we believe Ray Kurzweil predictions
(that so far have tended to be true), we will have human level AIs (with possibly a conscience) by the end of
the 2020s. Hence congratulations for having taken on the challenge to learn AI, because one day you might
have an important role to play.
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